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Chapter1. OVERVIEW

In “Why Textbook ElGamal and RSA Encryption are Insecure” [BJN00], several algorithms

for attacking the plain ElGamal public-key cryptosystem are described. In this paper I explore

the implementation in more detail and discuss the relative efficiency of different approaches.

I also explore the use of external storage to reduce the memory requirements and allow the

attacks to be run on larger messages.

1.1 Introduction

Public key cryptosystems generally have an elegant mathematical simplicity, and many

textbooks describe them in these terms. However it is often the case that a simple imple-

mentation is not secure. In particular, [BJN00] describe several attacks on ElGamal and RSA

which work well when the encrypted message is short and has not been preprocessed. The

attacks on ElGamal also depend on the parameters used when creating the cryptosystem.

The required parameters, while not commonly discussed in textbooks, are commonly used in

practical implementations.

Computer scientists have been trying to formalize the idea of what makes a secure crypto-

system. However these formal definitions often seem far stronger than necessary for practical

security — many cryptosystems used in practice do not satisfy the formal definitions. This

includes typical ElGamal implementations. The attacks discussed in this paper suggest that

it is worth striving to meet formal definitions of security in actual implementations.
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1.2 Hybrid Cryptosystems

A cryptosystem describes a way for two or more parties to communicate in secret over a

public channel. The content of the communication, which may be human language or anything

else, is called the plaintext. The heart of a cryptosystem is a cipher, which specifies rules for

encryption and decryption. The encryption rule takes the plaintext and a pre-determined key,

and produces a ciphertext which hides the content of the original plaintext. The decryption

rule takes another key, possibly different from the encryption key, and recovers the plaintext

from the ciphertext.

There are two basic types of cryptosystems: symmetric key (private key) systems and public

key (asymmetric) systems. Public key systems are much slower than symmetric systems,

but symmetric systems require key agreement through an existing secure channel. Hybrid

cryptosystems combine them to gain the advantages of both.

1.2.1 Symmetric key cryptosystems

Symmetric key systems use the same key for both encryption and decryption. In order to

communicate securely using a symmetric system, two partyies must agree on the key using

some pre-existing secure channel. When more than two parties are involved key distribution

becomes even more complicated, and historically key distribution has been a major obstacle for

practical uses of cryptography. Typical symmetric ciphers use very convoluted transformations

to obscure any patterns in the original message. The key controls how the transformations

operate, and provides a map for reversing the transformations during decryption.

Examples of symmetric key systems include the Data Encryption Standard (DES), the

Advanced Encryption Standard (AES), and Skipjack. DES is no longer considered to provide

adequate security, and AES is the recommended symmetric key algorithm for new applications.

However DES was the recommended standard from 1976 until 1999. Many legacy systems,

including embedded systems which cannot be easily updated with software patches, use DES.

DES uses a 56-bit key and AES uses keys of 128 bits or more. Skipjack was developed by the

U.S. National Security Agency, and was declassified in 1998. It uses 80-bit keys. All of the
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ciphers mentioned are block ciphers - they encrypt and decrypt data in chunks.

1.2.2 Public key cryptosystems

Public-key cryptosystems help solve the key distribution problem by using separate keys for

encryption and decryption, and making the encryption key public. Anyone can then encrypt

a message, but only parties in possession of the private key can decrypt messages. Public key

systems rely on one-way trap door functions, which are interesting mathematical functions

that can be easily computed in one direction but are very difficult to reverse unless a secret

key is known (the trap door). Since the encryption key is made public, finding the private

decryption key from the public encryption key must be intractable.

One application of public-key cryptography is secure email. Public keys are typically pub-

lished on a user’s website. However if the user’s website is compromised, a different public

key corresponding to a malicious adversaries private key can be substituted. For this reason,

public-key cryptography doesn’t completely solve the key distribution problem. However dig-

ital signatures can be used to fill the remaining gaps, allowing users to build a web of trusted

public keys, and accept new keys if they are signed by an already trusted public key.

ElGamal is a public key system which uses modular exponentiation as the basis for a one-

way trap door function. The reverse operation, the discrete logarithm, is considered intractable.

ElGamal was never patented, making it an attractive alternative to the more well known RSA

system. Public key systems are fundamentally different from symmetric systems, and typically

demand much larger keys. 1024 bits is the minimum recommended size for ElGamal, and even

larger keys are recommended for some applications.

1.2.3 Combining the two systems

Symmetric systems are far faster than public key systems — AES, for example is roughly

10000 times faster than RSA. Efficiency is important for real-time communication and bulk

encryption and decryption of large data sets.

In a hybrid system, a public key system is used to negotiate a session key — one party
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generates a random session key, encrypts it using the other party’s public key, and sends the

encrypted message. The receiving party decrypts the session key message with their private

key, and now both parties know the session key. The session key is then used to encrypt and

decrypt all remaining communication with a symmetric cipher.

1.2.4 Short messages and public key systems

Since symmetric systems like DES pre-date public key systems, there has never been a

good reason to use public key systems for encryption and decryption except as part of a hybrid

system. For this reason, the primary message payload for public key systems is session key

negotiations. It is therefore reasonable to expect a legacy system using DES and ElGamal in

a hybrid system to send 56-bit DES keys encrypted using ElGamal.

1.3 Implementation

I implemented two of the attacks discussed in [BJN00]: the basic meet-in-the-middle attack

and the two-table attack. Both attacks perform meet-in-the-middle searches of part of the

message space. I implemented several variations of the basic meet-in-the-middle attack, one

of which uses external storage instead of main memory. Source code is available at http:

//www.math.iastate.edu/brycea/thesis2008.html under the MIT license.

All attacks were implemented in C++ with the GNU Multiple Precision Arithmetic Library

(GMP) [gmp]. While GMP has been heavily optimized as a general purpose big number library,

it has not been optimized for cryptography. In particular it does not allow the programmer

to specify that a certain type of reduction should be used to perform modular exponentiations

or multiplications. Depending on the choices made by GMP internally, it may be possible to

significantly improve the performance of the attacks.

The different attacks were run on ciphertexts of different size messages to determine how

the attacks scale and how they compare to one another. The results are given in Chapter 5.

http://www.math.iastate.edu/brycea/thesis2008.html
http://www.math.iastate.edu/brycea/thesis2008.html
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1.4 Splitting Probabilities

The attacks discussed in this paper start by assuming that the message is a positive integer

and can be factored into two or more integers of given sizes. Assuming the message is an

integer does not limit the attacks; ElGamal already requires that messages be converted to

a positive integer before encryption. A DES key, for example, is a string of 56-bits; however

that string of bits can also be interpreted as a 56-bit unsigned integer. We may then assume

that the DES key splits into two factors of 28 bits each. Not all 56-bit integers will split in

this way, so an attack with that splitting assumption will fail on many messages. However the

probability of success is still fairly high.

Table 1.1 lists some splitting probabilities obtained by factoring 100000 random numbers

m in the range 1 . . . 2b − 1 and checking for splits m1m2 = m with m1 ≤ 2b1 and m2 ≤ 2b2 .

The last column includes results from [BJN00], which differ slightly from my results.

For each attack, the choice of b1 determines the time and space required for the pre-

computation step, which only needs to be done once for a given cryptosystem, and b2 determines

the time required to crack a specific message. Thus we can choose different values for b1 and b2

to obtain different trade-offs between pre-computation and crack time, memory requirements,

and success probability.

See [BJN00] for some analytic results about splitting probabilities.
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Table 1.1 Experimental splitting probabilities

b b1 b2 Probability Probability [BJN00]

40

20 20 20% 18%
21 21 33% 32%
22 22 40% 39%
20 25 54% 50%

56

28 28 18%
29 29 30%
30 30 36%
26 34 49%

64

32 32 17% 18%
33 33 29% 29%
34 34 34% 35%
30 36 40% 40%
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Chapter2. THE ELGAMAL CRYPTOSYSTEM

An ElGamal cryptosystem operates in a finite cyclic group, which by convention is written

multiplicatively. For simplicity we restrict our discussion to the two most common choices:

the group of integers from 1 to p− 1 under multiplication mod p for some prime p, commonly

called Z∗p, and subgroups of Z∗p of prime order. We will use |g| to denote the order of an element

g in Z∗p and 〈g〉 to denote the cyclic subgroup of Z∗p generated by g. Unless otherwise noted,

assume multiplications and exponentiations involving elements of Z∗p are done mod p.

I begin the discussion of ElGamal with the discrete log problem, since its intractability is

central to the security of ElGamal.

2.1 The Discrete Log Problem

The standard logarithm is the inverse operation of standard exponentiation. Similarly we

define the discrete logarithm to be the inverse of modular exponentiation: given a modular

exponentiation y = gx in Z∗p and the base g, the discrete logarithm logg y is x. This is a

discrete logarithm in the cyclic group 〈g〉 which may or may not be all of Z∗p. When |g| = n

is large and has at least one large prime factor, discrete log problems in 〈g〉 are considered

intractable.

There are three basic types of discrete log algorithms: “square-root” algorithms such as

Pollard’s rho algorithm, the Pohlig-Hellmen algorithm, and index calculus algorithms.

Pollard’s rho algorithm can compute discrete logs in a cyclic group of prime order n in

time O(
√
n) and negligible space. If n is not prime and the factorization of n is known, then

the Pohlig-Hellman algorithm can be used. If n = pe1
1 p

e2
2 . . . pec

c is the prime factorization

of n, then the Pohlig-Hellman algorithm computes partial solutions by computing discrete
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logs in subgroups of order pi for i = 1 . . . c. Typically Pollard’s rho algorithm is used as a

subroutine to compute these logarithms, and the partial solutions are combined to compute the

requested discrete log. The runtime of Pohlig-Hellman is O(
∑c

i=1 ei(log n +
√
pi)), assuming

n has the prime factorization given above. In particular, if n is B-smooth, meaning that

none of it’s prime factors are greater than B, the runtime of the Pohlig-Hellman algorithm

is O(ln lnn(log n +
√
B)), since the average number of not necessarily distinct prime factors

is ∼ ln lnn. If n is at most 256 bits and has no factors of more than 16 bits, i.e. n is

(216 − 1)-smooth, then we can expect the Pohlig-Hellman algorithm to require only O(212)

operations. When Pollard’s rho algorithm is used with the Pohlig-Hellman algorithm, the

combined algorithm also uses negligible space. If n has a large prime factor neither of these

algorithms work well.

Index calculus algorithms do not work in a general cyclic group, but they do work in Z∗p

and they run in sub-exponential time. For example the number field sieve has an expected

running time of O(e(1.923+O(1))(ln p)1/3(ln ln p)2/3
). Index calculus methods do not work directly

on subgroups of Z∗p; however it can be used to compute logs in subgroups by computing logs

in Z∗p. For this reason, if n � p then a square-root algorithm such as Pollard rho (or Pohlig-

Hellman if n is composite) may be faster than index calculus methods, depending on the exact

relationship between n and p [MVO96].

2.2 Encryption and Decryption

An ElGamal cryptosystem can be described by a 4-tuple (p, g, x, y), where p is a large

prime and describes which group Z∗p is used, g is an element of order n in Z∗p, x is a random

integer with 1 ≤ x ≤ n − 1, and y = gx. If g is primitive, then n = p − 1. However this is

not required, and n may be chosen to be much smaller than p− 1 for efficiency reasons. The

public key is (p, g, y), and the private key is x.

Before a message can be encrypted, it must be converted to an integer between 1 and p−1,

i.e. an element of Z∗p. If the message is the key for a symmetric cipher, it may already be a

number. If the message is larger than p − 1, it can be broken into blocks. Many textbooks
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impose a further restriction that the message is a member of 〈g〉 [MVO96] [Sti05]; however in

practice implementations often ignore this restriction. If g is not primitive, then only n of the

p − 1 members of Z∗p will be in 〈g〉. In this case, it is not clear how to convert messages to

an element of 〈g〉. Raising g to the power of the message does not work, since a discrete log

would be required to retrieve the original message.

The encryption function requires a random integer k ∈ [1, n− 1] in addition to the public

key. The encryption and decryption functions are:

Ek(m) = (gk,myk) and D(u, v) = u−xv.

where all operations are done mod p (in Z∗p). The decryption function will recover the original

message: u−x = g−kx = (gx)−k = y−k, so D(Ek(m)) = u−xv = y−kmyk = m.

2.3 Security

If we recover the private key x, we can decrypt all past and future messages. Since the

public key includes y = gx and g, finding the private key from the public key amounts to

computing a single discrete logarithm in 〈g〉. For this reason, n and p should be very large —

n determines the runtime of square-root discrete log algorithms like Pollard’s rho algorithm,

and p determined the runtime of index calculus discrete log methods.

The key size typically refers to the size of p; 1024 is the recommended minimum. Legacy

implementations running on limited hardware may use 768 bits or even less. If n < p − 1 is

used, it should be large enough that the O(
√
n) discrete log algorithms take at least as long as

the index calculus algorithms.

To break a single ciphertext (u, v) = (gk,myk), it would suffice to find y−k, since m =

vy−k. Since inverses can be computed efficiently, we really just need yk. We can find k by

computing the discrete log of u = gk base g — however this may not be necessary. Cracking a

single ciphertext is equivalent to the Diffie-Hellman problem: given gk and y = gx, determine

gkx = yk. Since a discrete log can be used to solve the Diffie-Hellman problem, it is not any

more difficult than the discrete log problem; however it is not known whether or not it is less

difficult.
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2.4 Efficiency

Consider the ElGamal cryptosystem (p, g, x, y) where n = |g| is the order of g. Encryption

requires two exponentiations and one multiplication in Z∗p. Since the exponent k is chosen

between 1 and n− 1, using a large n will slow down exponentiation and therefore encryption.

The single multiplication will not be significant compared to the two exponentiations.

Decryption requires one exponentiation, one inversion, and one multiplication in Z∗p. The

private key x is the exponent, and it is also chosen between 1 and n − 1. Therefore choosing

a smaller n could also increase decryption performance; however there are other approaches,

like picking an x with very few ones in it’s binary representation. Because of the way modular

exponentiation is implemented, this will reduce the computation time.

Decreasing p also increases performance, since multiplications in Z∗p are faster for smaller

p. This gives the implementer with performance constraints a choice: decrease p and use

n = p − 1, or keep p large and choose n � p − 1. According to [BJN00] the latter choice is

not uncommon in actual implementations, likely because the faster index calculus discrete log

methods depend on p and not n.

2.5 Brute Force Attacks on a Hybrid System

Brute force attacks are a class of attacks on cryptosystems characterized by exhaustive

searching and very little ingenuity. The classic example is recovering a plaintext from a ci-

phertext by decrypting the ciphertext with every possible key. This will generate a bunch of

false plaintexts which look like gibberish, and with high probability only one which looks like

it could be the real plaintext. While it may be very easy for a human to determine what a

real plaintext should look like, for this attack to work a computer program must be able to

determine if a plaintext looks real. In practice this is often possible if the real plaintexts con-

tain structured data. Decrypting a ciphertext using the wrong key will likely produce a false

plaintext which has a roughly uniform distribution of bytes. Decryptions with very irregular

distributions are more likely to be the correct plaintext.

I will outline two brute force attacks on the ElGamal cryptosystem. There are n−1 possible
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values for the private key x. Given the ElGamal ciphertext of a 64-bit session key plaintext,

we could decrypt it using each possible value of the private key. Every decryption that is at

most 64 bits is a potential value for the session key, but if n � p − 1 there will be very few

such decryptions. Even if this is the case and n is only 256 bits, we require O(2256) modular

exponentiations which is intractable.

We could instead compute all possible encryptions of all possible messages until one is

found which matches the ciphertext. However this is even worse. If n is 256 bits and the

message is a 64-bit session key, then we must compute at most 264(n− 1) encryptions, so the

attack will take O(2320) encryptions, each taking two modular exponentiations.

If ElGamal is used as part of a hybrid cryptosystem, the actual data is encrypted with

a symmetric cipher using the session key. In this case it will likely be easier to attack the

symmetric cipher directly. If we have some way of recognizing real plaintexts, we can decrypt

the ciphertext with all 264 possible session keys until we find a decryption that looks like

plaintext. This attack requires O(264) symmetric cipher decryptions and plaintext tests, which

is orders of magnitude faster than the other brute force attacks.
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Chapter3. MEET-IN-THE-MIDDLE ATTACK

3.1 Requirements and Assumptions

For this attack we assume that the adversary has intercepted a ciphertext (u, v) and knows

which public key (g, p, y) was used to encrypt the message. Only the second part v = myk of

the ciphertext is used.

The attack works well under the following conditions:

1. The original message m is at most b bits, b is small, and the adversary is aware of this

limit. For example, the adversary may know that the message is a 56-bit DES key. The

attack becomes infeasible for messages much larger than 64 bits — in particular there

is no hope of using this attack on encryptions of a Skipjack (80-bit) or AES (128-bit)

session key.

2. m can be factored (split) into two factors of at most b1 and b2 bits respectively. The

probability of different splits is discussed in section 1.4.

3. The order n of g in Z∗p is known. If p − 1 has only one large prime factor, then it can

be factored efficiently using a combination of trial division, Pollard’s rho algorithm for

factoring, and primality testing. In that case, or if the factorization of p − 1 is already

known, n can be computed efficiently. Otherwise there is no known efficient algorithm

for computing n.

4. Messages are not represented as elements of 〈g〉. For ElGamal to work, the messages

must be represented as members of Z∗p — however the restriction to 〈g〉 is not necessary,

although highly recommended based on the success of this attack.
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5. n ≤ (p−1)2−b. This condition ensures that given an element vn of order dividing (p−1)/n

in Z∗p, the expected number of distinct messages m such that mn = vn is small.

The attack will not succeed 100% of the time, since we assume that the message splits in

some way. For example if the message is 56 bits and we choose parameters b1 = b2 = 28, we

have a 18% success probability. However this does not lessen the impact of the attack by much

— if 18% of the credit cards numbers passing through a credit processor are stolen it’s nearly

as much of a disaster as 100% stolen.

3.2 The Attack

One of the strength of ElGamal is its non-determinism — encrypting the same plaintext

multiple times will result in different ciphertexts, since a random k is chosen each time. However

the non-deterministic term yk has order dividing n, so if we raise v = myk to the n power we

eliminate yk:

vn = mn(yk)n = mn(gxk)n = mn(gn)kx = mn.

Note that there may be other messages m̃ such that m̃n = mn = vn. However under reasonable

assumptions this is unlikely. This is discussed in the next section.

A possible attack is to perform a brute force search for message m̃ such that m̃n = vn.

However if the message is a 56-bit session key and modular exponentiations can be computed in

one microsecond, this search will take over 1000 years on average. This is where the splitting

assumption comes into play. We limit our search to message m̃ which can be factored as

m̃ = m̃1m̃2 with m̃1 ≤ 2b1 and m̃2 ≤ 2b2 . In that case:

vn = m̃n = m̃n
1m̃

n
2

vnm̃−n
2 = m̃n

1 .

The idea of the attack is to compute m̃n
1 for m̃1 = 1 . . . 2b1 , store the (key, value) pairs

(m̃n
1 , m̃1) in a dictionary, and then compute vnm̃−n

2 for m̃2 = 1 . . . 2b2 and look up the values in

the dictionary. If a match is found, it means that vnm̃−n
2 = m̃n

1 , so m̃ = m̃1m̃2 is a candidate
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for the original message. The dictionary depends only on the public key and b1, so it can be

re-used for multiple messages.

If every message is represented as a member of 〈g〉, then vn = 1 for every message and this

attack fails completely.

3.3 Solution Collisions

If m̃ ∈ Z∗p, then m̃n will have order dividing (p− 1)/n, i.e. will be in the subgroup of order

(p − 1)/n. Given vn, we wish to calculate the number of expected messages m̃ not equal to

the actual message m such that m̃n = mn = vn. Let Xc be the random variable representing

this quantity. We will assume that there are 2b possible messages and that the values m̃n for

m̃ = 1 . . . 2b are roughly uniformly distributed in the subgroup of order (p − 1)/n. In that

case, m̃n = vn with probability 1
(p−1)/n = n

p−1 . Xc then has the binomial distribution with

associated probability n
p−1 and 2b − 1 trials. If n ≤ (p− 1)2−b, then

E[Xc] =
(

2b − 1
)( n

p− 1

)
<
(

2b
)((p− 1)2−b

p− 1

)
= 1.

The attack will only find splitting messages, so the actual expected number of collisions is

E[Xc] times the splitting probability. In practice n � (p − 1)2−b, in which case there will be

no collisions with high probability. For example if p− 1 is 1024 bits, n is 512 bits, and b = 64

(the messages are 64 bits), E[Xc] ∼ 2−448.

3.4 Implementation

3.4.1 Dictionary data structure

The attack is fairly straight forward, but we need to select a suitable data structure for the

dictionary.

The dictionary needs to support efficient insert and search routines, so the most obvious

choice would be to use a hash table. However the approach suggested by [BJN00] is to use a

sorted array. Instead of “inserting” into a data structure, we simply store all the (key, value)

pairs in the array as we generate them and sort the array (by the keys) at the end. Lookup is
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implemented in O(log n) using binary search. I call this basic implementation mim, short for

meet-in-the-middle. In practice the sort and binary search time are insignificant compared to

the modular exponentiations and multiplications, calling into question whether the complexity

of a hash table is necessary.

The sort will require O(n log n) operations, but the operations are much faster than the

modular exponentiations used to generate the array keys. The space requirement is also very

low: O(1) with heapsort and O(log n) with a clever implementation of quicksort, for example.

The author used the qsort and bsearch routines in the standard C library. Custom binary

search routines were used for some variations.

3.4.2 Reducing space requirements

Reducing the size of the dictionary will allow us to crack larger message without being

forced to use slow external storage. For example, if b = 64 and we choose b1 = b2 = 32, and

each entry in the dictionary requires s bytes, the dictionary will require 4s gigabytes. If p is

1024 bits, then most elements of Z∗p, in particular m̃n
1 , take up 128 bytes. The values of m̃1,

however, are only 4 bytes each. This means that if we store entire (m̃n
1 , m̃1) pairs in the array,

the dictionary will require over 512GB. This is not going to fit in system memory. [BJN00]

suggests storing (hash(m̃n
1 ), m̃1) in the table instead, where hash() is a suitable hash function.

To find unm̃−n
2 , we first compute hash(unm̃−n

2 ) and then do a binary search. hash() will likely

have collisions, so the search may find multiple possible values for m̃1. For each match, we

recompute m̃n
1 and test for equality with unm̃−n

2 . If the number of matches is much less than

2b2 , the extra exponentiation calculations required will not make a significant contribution to

the run time.

The expected number of matches depends on the size of the hash values. Suppose the hash

values are h bits and assume that the values of hash(m̃n
1 ) are uniformly distributed from 0 to

2h−1. The probability that hash(m̃n
2 ) matches a specific element in the table for a given value

of m̃2 is 2−h. There are 2b1 entries in the table, so the expected number of matches for a single

value of m̃2 is 2b1−h, and the total number of expected matches is 2b22b1−h = 2b−h. h should
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therefore be chosen so that b− h� b2.

hashmim implements this approach using a hash function which simply outputs the lower

32 bits of its input. With b = 46 and b2 = 23, the expected number of extra exponentiations

is 214. This is approximately 0.2% of 223, so we expect only a 0.2% increase in message crack

time when comparing hashmim to plain mim. For b = 64 and b1 = b2 = 32, a hash function

with h ≥ 40 would be needed.

3.4.3 Using external storage

The hashmim implementation still requires over 36GB to store the dictionary when b1 = 32.

While there are machines with this much main memory, the author only had access to a

computer with 6GB. An efficient implementation using external storage could also be used to

crack even larger messages.

diskmim uses the lower 32 bits, just like hashmim, but uses a Tokyo Cabinet [Hir] B+ tree

database to implement the dictionary.

3.5 Running Time and Memory Usage

The pre-computation requires 2b1 modular exponentiations, regardless of what data struc-

ture is used for the dictionary. The mim and hashmim attacks require an O(b12b1) sort - how-

ever for sizes of practical import, the exponentiation dominates since the constants involved are

much higher. The space requirement is 2b1 table entries. For the hash implementation, each

entry is only 8 bytes. If b1 is greater than 32 more space will be required for each entry, but

by that point we will need to use external memory anyway. For mim, each entry is log p+ b1

bits plus the overhead associated with using a big integer type.

diskmim again requires 2b1 exponentiations, but requires 2b1 inserts instead of the sort.

Each insert requires O(h) disk accesses, where h is the height of the B+ tree. Since B+ trees

maintain balance, h ≈ logt 2b1 = b1 logt 2, where t is the minimum branching factor. Therefore

we can expect the table build to run in O(b12b1). However the operations involved are now

disk accesses as well as in memory searches within a node, so we expect this implementation
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to run more slowly.

All attacks require O(2b2) modular exponentiations to attack a specific message once the

table is built. mim and hashmim require O(2b2) binary searches of the table, each running in

O(log 2b1) = O(b1) time, for a total complexity of O(b12b2). diskmim requires O(b12b2) disk

accesses, since each B+ tree search requires O(h) = O(b1) disk accesses.

3.6 Comparison to Brute Force

As discussed in section 2.5, the most effective brute force attack on a hybrid system is

usually a direct attack on the symmetric cipher. If a b-bit session key is used, then the expected

runtime is O(2b). If b1 = b2 = b/2, then the runtime of both phases of the meet-in-the-middle

attack will be O(2b/2+1).

As an example, consider b = 56 and b1 = b2 = 28. Brute force will take on average 255

symmetric cipher decryptions and plaintext tests. If decryptions and plaintext tests can be

done in one nanosecond, it will take more than a year to complete the attack. The meet-in-

the-middle attack will only succeed 18% of the time, but it will only take about 5 days to

complete.
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Chapter4. TWO TABLE ATTACK

4.1 Introduction

The two table attack is a refinement of the meet-in-the-middle attack which works when

Z∗p has a subgroup in which discrete logs can be computed efficiently. For example if p− 1 has

a B-smooth factor s with B sufficiently small, say 210, the Pohlig-Hellman algorithm can be

used to efficiently compute discrete logarithms in the subgroup of Z∗p of order s.

Roughly speaking, this attack uses discrete logarithms in the pre-computation phase to

replace modular exponentiation with additions in the message cracking phase. Again the

adversary requires only the second part v = myk of the ciphertext and the public key (p, g, y).

All the requirements and assumptions of the basic meet-in-the-middle attack apply to this

attack as well, except that now we require s > 2b to ensure that the expected number of

solution collisions is small. A splitting assumption is still used, so b1 and b2 can be chosen for

different time, space, and success probability trade-offs.

4.2 The Attack

Let p− 1 = nrs with s smooth. s will be easily factorable using trial division, and we can

therefore efficiently find an element α of Z∗p which generates the subgroup of order s [Sho05].

Instead of raising v to the n power, we raise v to the nr power. If a is any member of Z∗p,

(anr)s = ap−1 = 1, so anr will be an element of the subgroup 〈α〉 of order s, allowing us to

compute the discrete logarithm base α. Again we suppose that m̃1 and m̃2 are factors of m̃
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with bit size at most b1 and b2, respectively. If v is a ciphertext for m̃, then

v = ykm̃ = ykm̃1m̃2

vnr = (yk)nrm̃nr
1 m̃nr

2

vnr = m̃nr
1 m̃nr

2

log vnr = log m̃nr
1 + log m̃nr

2

where all logarithms are base α. Solution collisions are discussed in the next section.

For the pre-computation step, we build two tables T1 and T2, where T1 contains pairs

(log m̃nr
1 , m̃1) for m̃1 = 1 . . . 2b1 , and T2 contains pairs (log m̃nr

2 , m̃2) for m̃2 = 1 . . . 2b2 . In the

cracking phase, we wish to find two pairs (t1, v1) and (t2, v2) in the table such that log vnr =

t1 + t2 mod s. If we find such a pair, v1v2 is a possible plaintext. Under the right conditions,

this solution will be unique with high probability and m = v1v2.

The task of expressing an integer as the sum of k other integers from k different tables is

called the k-table problem. This attack uses the specific case where k = 2. Note that we no

longer need a dictionary data structure.

The basic idea for solving the two table problem is to sort both tables by the first coordinate

— T1 in ascending order and T2 in descending order — then test if the heads of each list sum

to the target, and if not advance the head pointer on one of the lists according to whether the

sum was larger or smaller than the target. However here we wish to find equality mod s, so

we require some modifications. We still sort T1 in ascending order and T2 in descending order,

which would be done in the pre-computation phase. Let t = log vnr be the target, and note that

the problem can be rephrased as finding (t1, v1) and (t2, v2) in T1 and T2, respectively, such that

t1 = t− t2 mod s. For a fixed t, we can define a virtual table T ′2 from T2 containing the values

(t−t2 mod s, v2) for each (t2, v2) ∈ T2. The smallest element of T ′2 will not necessarily be at the

first position, but the T ′2 will still be in circular order. However since we subtract elements it

will be in ascending circular order. Note that if t2 = t+1 is in T2, then t−(t+1) mod s = s−1

will be the largest element in T ′2. We perform a binary search for t + 1 in T2, and if t + 1 is

found we return the index. If t+ 1 is not found, the binary search will have zeroed in on the
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indexes between which t+ 1 would occur if it were present. The smaller of these indexes will

give us the smallest element t̂2 in T2 greater than t+ 1, and the corresponding element t− t̂2

in T ′2 will be the largest element of T ′2. The following element will be the smallest element -

e.g. if t is in T2, then t− t = 0 is the smallest element in T ′2.

Having determined the structure of T ′2, our task is to find elements (t1, v1) in T1 and (t′2, v2)

in T ′2 such that t1 = t′2. We compare the target t to the sum of the heads of T1 and T ′2. If

headT1 < headT ′2, then we advance the head pointer of T1. If they’re equal we have found a

potential solution. Otherwise we advance the head of T ′2.

4.3 Solution Collisions

If there are 2b possible messages and we assume that the values of vnr are uniformly

distributed in the subgroup of order s, then the expected number of solution collisions E[Xc]

will be:

E[Xc] =
(

2b − 1
)( nr

p− 1

)
=
(

2b − 1
)(1

s

)
.

In particular if s > 2b then E[Xc] < 1. Again the actual expected number of collisions will be

E[Xc] times the splitting probability associated with the b1 and b2 used for the attack.

4.4 Implementation

4.4.1 Discrete logs

This attack requires a discrete log algorithm which works well in a group of smooth order.

The author used the Pohlig-Hellman algorithm together with Pollard’s rho algorithm. Trial

exponentiation is used instead of Pollard rho for very small prime powers. See section 2.1 for

a brief discussion of these algorithms and their run-time.

4.4.2 Using only one table

If b1 = b2, then the tables T1 and T2 will be identical. In this case there is no need to store

multiple copies - if T1 is sorted in ascending order, we can treat it as a list sorted in descending
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order by inverting all comparisons, starting indexing at the end of the list, and traversing in

the reverse order. This will halve the space requirement and halve the sorting time.

4.5 Running Time and Memory Usage

Let bm = max (b1, b2). The pre-computation step requires 2bm modular exponentiations

and 2bm discrete logarithms, and the power for the modular exponentiations is now larger (nr

vs n). We therefore expect this pre-computation to run much more slowly than that of the

other attacks but to scale similarly for a fixed smooth factor s.

Cracking a message, on the other hand, is much faster. We need to compute one modular

exponentiation and one discrete log to compute the target. When searching the tables, will will

examine at most 2min (b1,b2) candidate pairs t1, t′2. For each candidate pair tested, we compute

t′2 = n − t2 mod s and perform comparison. These operations are orders of magnitude faster

than modular exponentiation when large numbers are involved.

If b1 = b2, T1 = T2 will have 2b1 = 2b2 entries. Each entry is a pair (log anr, a), where a is

at most b1 = b2 bits and the log is O(log s) bits. Since s may require more bits then the word

size, we may require a large integer type to store log anr. Note that storing just the hash of

the log is not sufficient, we need the full value.

When b1 6= b2, the size requirement jumps to 2b1 + 2b2 table entries.

4.6 Three and Four Table Attacks

This attack can be extended to three and four table attacks [BJN00]. These attacks assume

the message splits into three or four factors, so they have much lower probability of success.

However the four table attack in particular requires far less memory and computation, making

the attack feasible for larger messages.
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Chapter5. RESULTS

5.1 Test Data

The ElGamal cryptosystem used in generating attack timings has a 1024 bit prime, a base

g with 512-bit order n, and p− 1 has a 72 bit 619-smooth factor. See Table 5.1 for a complete

list of the parameters.

The attacks were run with parameters b1 = b2 = b/2, for b = 32, 34, . . . , 46. hashmim

was also run on a 56 bit message. Messages were generated by picking two random b/2 bit

number and multiplying, ensuring that the attacks will succeed when cracking the resulting

ciphertexts. All attacks searched the entire table to find all possible solutions. In practice this

is not necessary, especially since the ElGamal cryptosystem used is such that solution collisions

are extremely unlikely. Full table searches were done to ensure that all attacks were operating

correctly. This means that on average the first solution will be found in half the time listed

in the tables if the message splits. If the solution is unique with high probability, there is

no need to continue the search after a solution is found. Non-splitting messages will require

an entire table search to discover the failure, so the numbers given will be accurate. While

different splits of a single solution occurred, none of ciphertexts had multiple unique solutions,

as expected.

5.2 The Test Machine

An AMD Athlon(tm) 64 X2 4400+ with 6GB of RAM running Linux with kernel 2.6.27

was used to run the attacks. This is a dual-core processor, but this implementation makes use

of only one core. The code was compiled with GNU g++ v4.3.2.
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Table 5.1 1024/512/72-bit smooth ElGamal cryptosystem

p 1183818437247171017494615967566464822309058976604631236245603945638076099339
5604226539234152095602888644631771664207057053879231168634640942410140411181
2833160856599353200278320709069863021480695349692087358601640250836457118800
9325123526808822114916547325135328515467027861908776795126533757093455527133
02401

g 5966084637601201229973206216707044991356807936975972639094336647273565574712
5035179031089451125540857538031073871730574393537580324435989370818322776711
3851702879616416528431089561994162759693918367761169508349642281876675530310
5088171621898473394426220682383314346093785451807064932529633219576414632870
1846

n 1064327919006543665818998661806440642164496504893112375905939996126718856028
0838103148616561846017372648276481588281249312389181981519220200679285520165
533

y 2172498129932735013049280409462466538531157445950358817702245771810208875891
7010480569332112803059495077627059746788501514325709884124145938761499931046
1232971995374563466969632689835510518067757743576466555874580368901533995892
5594912452835793161850092163137169608760164742880891226303421422821016672994
9452

x 1043885135117210310158222692694947757530131092288759195904471923806648061192
5670159164484130618566553957172065131510914771071115423095329962224676443129
529

s 4571304189027792955200
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5.3 Summary of Results

The ciphertext crack times are averages over at least two ciphertexts. Since an entire table

search is performed, there is no reason to expect some ciphertexts to take longer than others.

The results confirmed this, so averaging over multiple ciphertexts is not really necessary. See

figures 5.1 and 5.2 and table 5.2 for the results. A timing resolution of one second was used.

• The 2b1 modular exponentiations dominate the pre-computation phase for mim and hash-

mim — so much so that sorting is insignificant. With b = 56 and b1 = b2 = 28, the pre-

computation phase of hashmim took over 55 hours. The sort took less than 2 minutes.

• Modular exponentiations also dominate the message crack phase for mim and hashmim.

However the extra multiplications and inversions required are significant, as can be seen

by the longer run time of message cracking vs pre-computation. The gap can be partly

closed by combining the exponentiation and inversion into a single operation; however

this was discovered too late to include in the final results, and caching (see section 5.5)

supersedes this optimization.

• mim and hashmim are not significantly different in table build time (pre-computation)

or message crack time. Moreover for each ciphertext cracked, the actual number of extra

exponentiations computed by hashmim was very close to the expected number of matches

as discussed in section 3.4.2. hashmim was actually faster than mim in many cases; this

was likely caused by the big integer type initializations done by mim.

• The table build times for diskmim start to diverge from the other basic mim attacks

for larger messages. Furthermore the times do not scale with the size of the table - the

times more than double when the table size doubles, and the difference is significant.

Unlike the other attacks, the table insert operations (B+ tree inserts to disk) become

a significant part of pre-computation. diskmim also eventually stops using 100% CPU,

indicating that it becomes I/O bound.

• The message crack times for diskmim are actually fairly close to the other basic mim
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attacks, even for larger messages when the table build times start to diverge. This

suggests that the node-splitting required when building the B+ tree is causing the long

table build times, not the search required to determine the insert location.

• twotable is orders of magnitude faster at cracking messages. For messages less than 44

bits, it took less than a second. Even at 46 bits it took under 4 seconds when the next

fastest attack took over 1 hour and 45 minutes. This fast crack time comes at the cost

of much longer table build times. For this reason twotable is only faster when more than

7 messages will be attacked.

Figure 5.1 Table build times
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5.4 The Effect of ElGamal Key Size on Attack Time

Modular exponentiations require O(log e) modular multiplications, where e is the exponent.

In our case, n is the exponent and p determines the group Z∗p and the size of the elements

being multiplied. Therefore both reducing p and reducing n will reduce the time required for

modular exponentiation. In particular we expect halving the bit size of n to approximately
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Figure 5.2 Ciphertext crack times
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halve the exponentiation time. Since modular exponentiation dominates both pre-computation

and message cracking, we expect the attacks to scale similarly.

Table 5.3 lists attack times against a 40 bit message with b1 = b2 = 20 for several different

cryptosystems. All the cryptosystems have a 72-bit B-smooth factor with B near 600, but the

smooth factors are not identical. This explains why the twotable times are irregular.

5.5 Caching Exponentiations

If b1 ≥ b2, then the modular exponentiations used during the message crack phase are

also calculated during the pre-computation phase. If the values are saved to a file during

pre-computation, they can be read sequentially by the message crack phase and need not be

re-calculated. Applying this to hashmim with b = 46, the message crack time was reduced

from 6660 seconds to 420 seconds and only added about 150 seconds to pre-computation. This

optimization can also be applied to plain mim and diskmim; however twotable has already

eliminated modular exponentiation from the message crack phase.

Caching can still be used if b1 < b2. The cache can be started during pre-computation,
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Table 5.2 Results for a 1024/512/72-bit smooth cryptosystem

mim hashmim diskmim twotable
b T0 C0 T C T C T C m̃nr T C
32 49 51 49 51 48 51 48 51 88 393 0
34 96 103 97 102 97 102 98 105 175 786 0
36 193 206 193 205 192 204 200 217 349 1573 0
38 385 407 387 416 386 409 425 439 698 3152 0
40 771 813 773 820 772 818 1021 883 1395 6286 0
42 1543 1628 1572 1647 1545 1639 2709 1777 2793 12588 1
44 3080 3260 3097 3284 3085 3274 6860 3565 5581 25091 2
46 6166 6518 6197 6575 6170 6660 18959 7132 11171 50359 4
56 197312∗ 199500 223468

b the assumed bit size of the message; note that b1 = b2 = b/2
T0 the time in seconds required to compute m̃n for m̃ = 1 . . . 2b/2

C0 the time in seconds required to compute (m̃n)−1vn for m̃ = 1 . . . 2b/2

T table build time (pre-computation) in seconds
C message crack time in seconds
m̃nr the time in seconds required to compute m̃nr for m̃ = 1 . . . 2b/2

* T0 for b = 56 was estimated from the value of T0 for b = 46.

which will be significant if b2 − b1 is small, and completed by the first message crack run.

The message crack phase actually requires the inverse of the modular exponentiations.

While inversions are much cheaper than exponentiations, they still make a significant contri-

bution. Caching the inversions during the first message crack would therefore be worthwhile.

Future message attacks will then require only a disk read, a multiplication, and a modular

reduction for each possible value of m̃2. The multiplication cannot be cached, since it depends

on the particular ciphertext being attacked.

5.6 Larger Messages

If we wish to crack 64 bit messages with b1 = b2 = 32, we need to calculate 232 modular

exponentiations both to build the table(s) and to crack a message. This calculation alone

will take about 40 days on the author’s machine. Since there is not enough system memory,

diskmim is the only attack which can attack messages this large. Since the build times for
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Table 5.3 Effect of ElGamal key size on attack time for 40 bit messages

bits mim hashmim diskmim twotable
p n T C T C T C T C

1024 512 773 820 772 818 1021 883 6286 < 1
1024 256 393 440 390 437 589 508 6703 < 1
768 512 501 536 498 533 709 604 3844 < 1
768 256 256 290 254 288 437 358 4251 < 1
512 256 123 145 121 143 253 212 1843 < 1

p the bit size of the prime p
n the bit size of n = |g|
T table build time in seconds
C ciphertext crack time in seconds

diskmim increase by well over a factor of two when doubling the table size, the attack will take

well over 120 days. This can likely be improved dramatically however by tuning the B+ tree

or using a different data structure. Furthermore lots of data needs to remain secure for years,

so if an attack succeeds in months it is still a major problem.

A four table attack could also be run in parallel with the main attack. If the message turns

out to split four ways, we will find a solution in far less time.
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Chapter6. SUMMARY AND DISCUSSION

6.1 Comparing the Attacks

If b = 64 and b1 = b2, the only viable attack is diskmim, since the table will not fit

in memory no matter how little space is used by each entry. However by taking b1 < 32 and

b2 > 32, the other attacks will work at the expensive of longer message crack times and possibly

success probability. However because of the slow table build times of diskmim, this approach

may be faster when only a few messages need to be cracked.

There is no good reason to choose plain mim over hashmim — the size of the hash function

can be increased when b and b1 are large to ensure that the extra computations required by

hashmim are insignificant. If hundreds of messages will be attacked and the conditions for the

twotable attack are met (p− 1 has a smooth factor s with s > 2b), then twotable will be faster

than hashmim, even with exponentiation caching. However twotable uses more memory than

hashmim, so it will require picking b1 < b/2 before hashmim. For this reason hashmim may

be faster when b is large.

6.2 Potential Improvements

Since modular exponentiations, multiplications, and inversions dominate both phases of the

attack when the table fits in memory, caching and improving the speed of these operations is

the best way to improve overall performance. Caching has already been discussed; improving

the operations themselves may be possible using special purpose routines instead of the GMP

library.

Small gains could be achieved by using a more advanced data structure such as a hash table

in mim and hashmim. However it is difficult to beat the performance of hashmim without using
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more memory. Since the potential gains are so small, this is a poor trade-off.

diskmim could likely be improved significantly by tuning the B+ tree parameters. However

I suspects that a disk-based hash table will prove a better data structure for this attack,

allowing most inserts and searches to be completed with a single disk access.

6.3 Protecting Against the Attacks

The most direct way to defeat the attacks discussed in this paper is to represent messages as

elements of 〈g〉, either by choosing g primitive so 〈g〉 = Z∗p or by designing an easily computable

bijective mapping between messages and the proper subgroup 〈g〉. However [BJN00] describes

a meet-in-the-middle attack which works when n = p − 1 and n has a smooth factor at least

as large as the message. This demonstrates that meet-in-the-middle methods can work even

when all messages are in 〈g〉.

With the proper choice of parameters, ElGamal is conjectured to be semantically secure

— a popular formal definition of security (see section 5.9 in [Sti05] and definition 8.47 in

[MVO96]). n is chosen to be a large prime such that p = 2n + 1 is also prime, and the base

g is selected to have order n as usual. These parameters are recommended in the OpenPGP

Message Format (RFC 2440) section 12.5 [CDFT98]. The cyclic subgroup 〈g〉 will then be

the group of quadratic residues mod p, and representing messages as members of this group

is relatively easy. If these parameters are used, and messages are represented as quadratic

residues, the resulting cryptosystem is conjectured to be semantically secure assuming that

the Discrete Log problem in Z∗p (and in 〈g〉) is intractable [Sti05]. Perhaps more importantly,

the cryptosystem will not be vulnerable to the meet-in-the-middle attacks discussed in this

paper and in [BJN00].

Another way of defeating these attacks is pre-processing the message. For example we can

simply pad short messages to say 128 bits, making the attacks infeasible. The modular expo-

nentiation dominates encryption, so having a larger message to multiply will not significantly

impact performance. However the reader should be wary of such a simplistic approach. See

[ABR99] for a more complete overhaul of ElGamal, called DHAES. DHAES is designed to
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conform to high standards of formal security while matching the performance of ElGamal.

6.4 Conclusion

Implementing a cryptosystem securely requires far more than an understanding of the

basic algorithm. The implementer must be aware of possible attacks on the system, and

choose keys and parameters to make those attacks infeasible. This paper discussed attacks

which rely on the underlying mathematics - however timing attacks have been discovered

against various cryptosystem which gain information based on how long the computer takes to

perform encryption or decryption operations. Secure implementation is difficult, and using an

existing implementation which has already undergone extensive public review should always

be preferred over creating a new implementation.
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